Trắc nghiệm Toán 10 CTST Bài 1. Dấu của tam thức bậc hai (Nhận biết) có đáp án
-
314 lượt thi
-
7 câu hỏi
-
30 phút
Danh sách câu hỏi
Câu 1:
Biểu thức nào sau đây là tam thức bậc hai?
Hướng dẫn giải
Đáp án đúng là: B
Tam thức bậc hai có dạng f(x) = ax2 + bx + c, với a ≠ 0.
Ta thấy chỉ có đa thức ở phương án B có dạng f(x) = ax2 + bx + c với a = –1, b = 2 và c = –10.
Vậy ta chọn phương án B.
Câu 2:
Biệt thức và biệt thức thu gọn của tam thức bậc hai f(x) = –x2 – 4x – 6 lần lượt là:
Hướng dẫn giải
Đáp án đúng là: D
Tam thức bậc hai f(x) = –x2 – 4x – 6 có dạng f(x) = ax2 + bx + c, với a = –1, b = –4, c = –6.
Biệt thức của f(x): ∆ = b2 – 4ac = (–4)2 – 4.(–1).(–6) = –8.
Biệt thức thu gọn của f(x): ∆’ = .
Vậy ∆ = –8 và ∆’ = –2.
Do đó ta chọn phương án D.
Câu 3:
Nghiệm của tam thức bậc hai f(x) = –2x2 + 4x – 2 là:
Hướng dẫn giải
Đáp án đúng là: A
Tam thức bậc hai f(x) = –2x2 + 4x – 2 có ∆ = 42 – 4.(–2).(–2) = 0.
Do đó f(x) có nghiệm kép .
Vậy f(x) có nghiệm là x = 1.
Do đó ta chọn phương án A.
Câu 4:
Cho f(x) = (3m – 2)x2 – 2(3m – 2)x + 3(2m + 1). Đa thức f(x) là tam thức bậc hai khi và chỉ khi:
Hướng dẫn giải
Đáp án đúng là: B
Ta có đa thức f(x) = (3m – 2)x2 – 2(3m – 2)x + 3(2m + 1) là tam thức bậc hai khi và chỉ khi a ≠ 0.
Nghĩa là, 3m – 2 ≠ 0.
Suy ra
Vậy ta chọn phương án B.
Câu 5:
Cho tam thức f(x) = ax2 + bx + c (a ≠ 0), có ∆ = b2 – 4ac. Ta có f(x) ≤ 0, ∀x ∈ ℝ khi và chỉ khi:
Hướng dẫn giải
Đáp án đúng là: A
Ta có f(x) ≤ 0, ∀x ∈ ℝ khi và chỉ khi a < 0 và ∆ ≤ 0.
Ta chọn phương án A.
Câu 6:
Cho f(x) = ax2 + bx + c (a ≠ 0) và ∆ = b2 – 4ac. Khi f(x) luôn cùng dấu với hệ số a, với mọi x ∈ ℝ thì:
Hướng dẫn giải
Đáp án đúng là: A
Ta có f(x) cùng dấu với hệ số a với mọi giá trị của x khi ∆ < 0.
Do đó ta chọn phương án A.
Câu 7:
Hướng dẫn giải
Đáp án đúng là: C
Cho tam thức bậc hai f(x) = ax2 + bx + c (a ≠ 0), ta có:
⦁ Nếu ∆ < 0 thì f(x) cùng dấu với a với mọi giá trị x.
Do đó phương án B, D đều sai.
⦁ Nếu ∆ = 0 và là nghiệm kép của f(x) thì f(x) cùng dấu với a với mọi x ≠ x0.
Do đó phương án C đúng.
⦁ Nếu ∆ > 0 và x1, x2 là hai nghiệm của f(x) (x1 < x2) thì f(x) trái dấu với a với mọi x trong khoảng (x1; x2); f(x) cùng dấu với a với mọi x thuộc hai khoảng (–∞; x1); (x2; +∞).
Do đó phương án A sai.
Vậy ta chọn phương án C.