Thứ bảy, 23/11/2024
IMG-LOGO
Trang chủ Lớp 9 Toán Trắc nghiệm Chuyên đề Toán 9 Chuyên đề 4: Góc và đường tròn có đáp án

Trắc nghiệm Chuyên đề Toán 9 Chuyên đề 4: Góc và đường tròn có đáp án

Dạng 2: Góc nội tiếp có đáp án

  • 592 lượt thi

  • 3 câu hỏi

  • 45 phút

Danh sách câu hỏi

Câu 1:

Trên cạnh huyền BC của tam giác vuông ABC về phía ngoài ta dựng hình vuông với tâm tại điểm O. Chứng minh rằng AO là tia phân giác của góc BAC^.

Xem đáp án

Vì O là tâm của hình vuông nên  BOC^=90°.

Lại có  BAC^=90° suy ra bốn điểm  A,B,O,C cùng nằm trên đường tròn đường kính BC.

Đối với đường tròn này ta thấy  BAO^=BCO^ (góc nội tiếp cùng chắn  BO).

Mà  BCO^=45°BAO^=45°.

Do  BAC^=45°, nên  CAO^=BAC^BAO^=45°.

Vậy   BAO^=CAO^, nghĩa là AO là tia phân giác của góc vuông  BAC^ (đpcm).

Media VietJack


Câu 2:

Cho tam giác nhọn ABC nội tiếp đường tròn (O). Từ đỉnh A ta kẻ đường cao AH (H thuộc BC). Chứng minh rằng  BAH^=OAC^.

Xem đáp án

Kẻ đường kính AE của đường tròn (O). Ta thấy  ACE^=90° (góc nội tiếp chắn nửa đường tròn).

Từ đó  OAC^+AEC^=90°.                    (1)

Theo giả thiết bài ra, ta có:  BAH^+ABC^=90°.       (2)

 Lại vì  AEC^=ABC^ (cùng chắn  AC) (3)

Từ (1), (2) và (3) suy ra  BAH^=OAC^ (đpcm).

Media VietJack


Câu 3:

Cho tam giác ABC nội tiếp trong đường tròn (O). Đường phân giác trong góc A cắt đường tròn ngoại tiếp tam giác tại D. Gọi I là tâm đường tròn nội tiếp tam giác ABC. Chứng minh  DB=DC=DI.

Xem đáp án

DB=DC=DI

<=> DB=DI <=>    ΔDBI cân tại D <=>  IBD^=BID^

Media VietJack

Giải chi tiết

Ta luôn có DB=DC do AD là tia phân giác trong góc A. Ta sẽ chứng minh tam giác DIB cân tại D.

Thật vậy ta có:  IBD^=IBC^+CBD^.

Mặt khác  CBD^=CAD^ (góc nội tiếp chắn cung  CD).

Mà  BAD^=CAD^, IBC^=IBA^ (tính chất phân giác) suy ra  IBD^=ABI^+BAI^.

Nhưng  BID^=ABI^+BAI^ (tính chất góc ngoài của  ΔABI). Suy ra  IBD^=BID^.

Vậy tam giác BID cân tại D, suy ra  DB=DI=DC.

Nhận xét

Thông qua bài toán này ta có thêm tính chất: Tâm đường tròn ngoại tiếp tam giác IBC là giao điểm của phân giác trong góc A với (O).

 


Bắt đầu thi ngay

Bài thi liên quan


Có thể bạn quan tâm


Các bài thi hot trong chương