IMG-LOGO
Trang chủ Lớp 9 Toán Trắc nghiệm Chuyên đề toán 9 Chuyên đề 5: Các bài toán thực tế giải bằng cách lập phương trình và hệ phương trình có đáp án

Trắc nghiệm Chuyên đề toán 9 Chuyên đề 5: Các bài toán thực tế giải bằng cách lập phương trình và hệ phương trình có đáp án

Dạng 2: Bài toán về công việc đồng thời có đáp án

  • 2190 lượt thi

  • 4 câu hỏi

  • 30 phút

Danh sách câu hỏi

Câu 1:

Hai người cùng làm chung một công việc thì sau 3 giờ 36 phút làm xong. Nếu làm một mình thì người thứ nhất hoàn thành công việc sớm hơn người thứ hai là 3 giờ. Hỏi nếu mỗi người làm một mình thì bao lâu xong công việc.

Xem đáp án

Gọi ẩn là thời gian người thứ nhất làm một mình xong công việc và lập bảng:

 

Thời gian hoàn thành công việc (giờ)

Năng suất làm trong 1 giờ

Hai người

\(\frac{{18}}{5}\)

\(\frac{5}{{18}}\)

Người thứ nhất

x

\(\frac{1}{x}\)

Người thứ hai

\(x + 3\)

\(\frac{1}{{x + 3}}\)

Đổi 3 giờ 36 phút\[ = 3\frac{3}{5}\left( h \right) = \frac{{18}}{5}\left( h \right).\]

Gọi x (giờ) là thời gian người thứ nhất làm một mình xong công việc. Điều kiện: \[x > 0.\]

Khi đó thời gian người thứ hai làm một mình xong công việc là \[x + 3\] (giờ).

Trong 1 giờ:

+ Người thứ nhất làm được \(\frac{1}{x}\) công việc.

+ Người thứ hai làm được \(\frac{1}{{x + 3}}\) công việc.

+ Cả hai người làm được \(\frac{5}{{18}}\) công việc

 Ta có phương trình: \(\frac{1}{{x + 3}} + \frac{1}{x} = \frac{5}{{18}}\)

 

Vậy người thứ nhất làm một mình thì 6 giờ xong công việc, 9 giờ xong công việc.


Câu 2:

Hai vòi nước cùng chảy vào một bể nước cạn (không có nước) trong 1 giờ 12 phút thì đầy bể. Nếu vòi thứ nhất chảy trong 30 phút và vòi thứ hai chảy trong 1 giờ thi được \(\frac{7}{{12}}\) bể. Hỏi nếu mỗi vòi chảy một mình thi bao lâu đầy bể?

(Thi thử THPT Lương Thế Vinh - Hà Nội năm học 2018-2019)

Xem đáp án

Đổi 1 giờ 12 phút\[ = 1\frac{1}{5} = \frac{6}{5}\left( h \right),\] 30 phút\[ = \frac{1}{2}\left( h \right).\]

Gọi thời gian vòi thứ nhất và vòi thứ hai chảy một mình đầy bể lần lượt là x, y (giờ).

Điều kiện: \(x > \frac{6}{5},y > \frac{6}{5}\)

Trong 1 giờ:

+ Vòi thứ nhất chảy được \(\frac{1}{x}\) bể.

+ Vòi thứ hai chảy được \(\frac{1}{y}\) bể.

+ Cả hai vòi chảy được \(1:\frac{6}{5} = \frac{5}{6}\) bể.

Suy ra phương trình: \(\frac{1}{x} + \frac{1}{y} = \frac{5}{6}\) (1)

Trong 30 phút, vòi thứ nhất chảy được \(\frac{1}{x}:2 = \frac{1}{{2x}}\) bể.

Vì nếu vòi thứ nhất chảy trong 30 phút và vòi thứ hai chảy trong 1 giờ thì được \(\frac{7}{{12}}\) bể, nên

\(\frac{1}{{2x}} + \frac{1}{y} = \frac{7}{{12}}\)    (2)

Từ (1) và (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}\frac{1}{x} + \frac{1}{y} = \frac{5}{6}\\\frac{1}{{2x}} + \frac{1}{y} = \frac{7}{{12}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\frac{1}{x} = \frac{1}{2}\\\frac{1}{y} = \frac{1}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 3\end{array} \right.\) (thỏa mãn).

Vậy thời gian vòi thứ nhất chảy một mình đầy bể là 2 giờ, thời gian vòi thứ hai chảy một mình đầy bể là 3 giờ.


Câu 3:

Để chuẩn bị cho một chuyến đi đánh bắt cá ở Hoàng Sa, hai ngư dân đảo Lý Sơn cần chuyển một số lương thực, thực phẩm lên tàu. Nếu người thứ nhất chuyển xong một nửa số lương thực, thực phẩm; sau đó người thứ hai chuyển hết số còn lại lên tàu thì thời gian người thứ hai hoàn thành lâu hơn người thứ nhất là 3 giờ. Nếu cả hai cùng làm chung thì thời gian chuyển hết số lương thực, thực phẩm lên tàu là \(\frac{{20}}{7}\) giờ. Hỏi nếu làm riêng một mình thì mỗi người chuyển hết số lương thực, thực phẩm đó lên tàu trong thời gian bao lâu?

(Sở Quảng Ngãi năm học 2014-2015)

Xem đáp án

Gọi x (giờ) là thời gian người thứ nhất một mình làm xong cả công việc, y (giờ) là thời gian người thứ hai một mình làm xong cả công việc.

Điêu kiện: \[x,{\rm{ }}y > \frac{{20}}{7}.\]

Theo đề bài, thời gian người thứ hai làm được nửa công việc lâu hơn người thứ nhất làm được nửa công việc là 3 giờ. Do đó: \(\frac{y}{2} - \frac{x}{2} = 3\)   (1)

Trong 1 giờ:

+ Người thứ nhất làm được \(\frac{1}{x}\) công việc.

+ Người thứ hai làm được \(\frac{1}{y}\) công việc.

+ Cả hai người làm được \(1:\frac{{20}}{7} = \frac{7}{{20}}\) công việc.

Suy ra \(\frac{1}{x} + \frac{1}{y} = \frac{7}{{20}}\)   (2)

Từ (1) và (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}\frac{1}{x} + \frac{1}{y} = \frac{7}{{20}}\\\frac{y}{2} - \frac{x}{2} = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\frac{1}{x} + \frac{1}{y} = \frac{7}{{20}}\\y - x = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\frac{1}{x} + \frac{1}{{x + 6}} = \frac{7}{{20}}{\rm{ }}\left( 4 \right)\\y = x + 6{\rm{     }}\left( 3 \right)\end{array} \right.\)

Xét phương trình: (4) \[ \Leftrightarrow 7{x^2} + 2x - 120 = 0 \Leftrightarrow \]

Vậy thời gian một mình làm xong cả công việc của người thứ nhất là 4 giờ, của người thứ hai là 10 giờ.


Câu 4:

Cho hai vòi nước cùng lúc chảy vào một bể cạn. Nếu chảy riêng từng vòi thì vòi thứ nhất chảy đầy bể nhanh hơn vòi thứ hai 4 giờ. Khi nước đầy bể, người ta khóa vòi thứ nhất và vòi thứ hai lại, đồng thời mở vòi thứ ba cho nước chảy ra thì sau 6 giờ bể cạn nước. Khi nước trong bể đã cạn, mở cả ba vòi thì sau 24 giờ bể lại đầy nước. Hỏi nếu chỉ dùng vòi thứ nhất thì sau bao lâu bể đầy nước.

Xem đáp án

Gọi ẩn là thời gian vòi thứ nhất chảy một mình đầy bể.

“Khi nước trong bể đã cạn, mở cả ba vòi” thì lúc này có vòi thứ nhất và vòi thứ hai chảy vào, còn vòi thứ ba chảy ra. Sau 24 giờ thì đầy bể.

Ta xác định được thời gian vòi thứ ba chảy một mình cạn bể là 6 giờ.

 

Thời gian hoàn thành công việc (giờ)

Năng suất làm trong 1 giờ

Vòi 1

\(x\)

\(\frac{1}{x}\)

Vòi 2

\[x + 4\]

\(\frac{1}{{x + 4}}\)

Vòi 3

6

\(\frac{1}{6}\)

Cả ba vòi (vòi 1, 2 chảy vào, vòi 3 chảy ra)

24

\(\frac{1}{{24}}\)

Gọi thời gian mà vòi thứ nhất chảy riêng đầy bể là x (giờ). Điều kiện: \[x > 0.\]

Khi đó thời gian vòi thứ hai chảy riêng đầy bể là \[x + 4\] (giờ).

Trong 1 giờ:

+ Vòi thứ nhất chảy được \(\frac{1}{x}\) bể.

+ Vòi thứ hai chảy được \(\frac{1}{{x + 4}}\) bể.

+ Vòi thứ ba chảy được \(\frac{1}{6}\) bể (vì vòi thứ ba chảy riêng 6 giờ cạn bể).

+ Cả ba vòi cùng chảy được \(\frac{1}{{24}}\) bể.

Vì cả ba vòi cùng chảy thì sau 24 giờ đầy bể nên ta có phương trình:

\(\frac{1}{x} + \frac{1}{{x + 4}} - \frac{1}{6} = \frac{1}{{24}} \Leftrightarrow \frac{1}{x} + \frac{1}{{x + 4}} - = \frac{5}{{24}} \Leftrightarrow 5{x^2} - 28x - 96 = 0 \Leftrightarrow \)  

Vậy chỉ dùng vòi thứ nhất thì sau 8 giờ bể đầy nước.


Bắt đầu thi ngay

Bài thi liên quan


Có thể bạn quan tâm


Các bài thi hot trong chương