Chủ nhật, 12/01/2025
IMG-LOGO
Trang chủ Lớp 8 Toán Bài tập Toán 8 Chủ đề 1: Tứ giác có đáp án

Bài tập Toán 8 Chủ đề 1: Tứ giác có đáp án

Dạng 1. Tính số đo góc có đáp án

  • 449 lượt thi

  • 7 câu hỏi

  • 45 phút

Danh sách câu hỏi

Câu 1:

Cho tứ giác ABCD biết A^:B^:C^:D^ = 4:3:2:1.

a) Tính các góc của tứ giác ABCD.

Xem đáp án
Cho tứ giác ABCD biết góc A : góc B : góc C : góc D = 4:3:2:1. a) Tính các góc của tứ giác ABCD. (ảnh 1)
a) Sử dụng tính chất dãy tỉ số bằng nhau.

A^=1440,  B^=1080,C^=720,  D^=360


Câu 2:

b) Các tia phân giác của C^ D^ cắt nhau tại E. Các đường phân giác của góc ngoài tại các đỉnh C và D cắt nhau tại F. Tính CED^ và CFD^.
Xem đáp án

b) Sử dụng tổng ba góc trong tam giác tính được CED^=1260  .

Chú ý hai phân giác trong và ngoài tại mỗigóc của một tam giác thì vuông góc nhau, cùng với tổng bốn góc trong tứ giác, ta tính được CFD^=540


Câu 4:

Chứng minh rằng trong một tứ giác, tổng hai góc ngoài tại hai đỉnh bằng tổng hai góc trong tại hai đỉnh còn lại.

Xem đáp án

Trường hợp hai góc ngoài tại hai đỉnh kề nhau (h.1.5)

Chứng minh rằng trong một tứ giác, tổng hai góc ngoài tại hai đỉnh bằng tổng hai góc trong tại hai đỉnh còn lại. (ảnh 1)

Gọi C1^, D1^là số đo hai góc trong; C2^ , D2^ là số đo hai góc ngoài tại hai đỉnh kề nhau là C và D. Ta có:

C2^+D2^=180°C1^+180°D1^=360°C1^+D1^. (1)

Xét tứ giác ABCD có: A^+B^=360°C1^+D1^ (2)

Từ (1) và (2) suy ra: A2^+C2^=B^+D^

Trường hợp hai góc ngoài tại hai đỉnh đối nhau (h.1.6)

Chứng minh rằng trong một tứ giác, tổng hai góc ngoài tại hai đỉnh bằng tổng hai góc trong tại hai đỉnh còn lại. (ảnh 2)

Chứng minh tương tự, ta được A2^+C2^=B^+D^


Câu 5:

Cho tứ giác ABCD có A^+B^=220°. Các tia phân giác ngoài tại đỉnh C và D cắt nhau tại K. Tính số đo của góc CKD.

Xem đáp án
Cho tứ giác ABCD có  góc A + góc B = 220 độ. Các tia phân giác ngoài tại đỉnh C và D cắt nhau tại K. Tính số đo của góc CKD. (ảnh 1)

Ta có: CDx^+DCy^=A^+B^=220°

CDx^+CDy^2=110°.Do đó D2^+C2^=110° .

Xét ΔCKDcó: CKD^=180°D2^+C2^=180°110°=70°


Câu 6:

Tứ giác ABCD có A^=C^. Chứng minh rằng các đường phân giác của góc B và góc D song song với nhau hoặc trùng nhau.

Xem đáp án
Tứ giác ABCD có góc A = góc C . Chứng minh rằng các đường phân giác của góc B và góc D song song với nhau hoặc trùng nhau. (ảnh 1)

Xét tứ giác ABCD có: B^+D^=360°A^+C^=360°2C^

B1^=B2^, D1^=D2^ nên B1^+D1^=180°C^B1^+D1^+C^=180°(1)

Xét ΔBCM có B1^+M1^+C^=180° (2)

Từ (1) và (2) suy ra D1^=M1^. Do đó DN  // BM.


Câu 7:

Cho tứ giác ABCD có AD=DC=CB; C^=130°; D^=110°. Tính số đo góc A, góc B.

Xem đáp án
Cho tứ giác ABCD có AD = DC = CB; góc C = 130 độ, góc D = 110 độ. Tính số đo góc A, góc B. (ảnh 1)

Vẽ đường phân giác của các góc C^D^chúng cắt nhau tại E.

Xét ΔECDcó CED^=180°110°+130°2=60°

ΔADE=ΔCDE (c.g.c) AED^=CED^=60°

ΔBCE=ΔDCE (c.g.c) BEC^=DEC^=60°

Suy ra AEB^=180°do đó ba điểm A, E, B thẳng hàng

Vậy BAD^=EAD^=ECD^=65°. Do đó ABC^=360°65°+110°+130°=55°


Bắt đầu thi ngay

Bài thi liên quan


Có thể bạn quan tâm


Các bài thi hot trong chương